

Privacy

Prof. Ravi Sandhu Executive Director and Endowed Chair

Lecture 15

ravi.utsa@gmail.com www.profsandhu.com

Security versus Privacy

Security versus Privacy

Security and Privacy Objectives

Privacy Goals

- Browsing privacy
- Interaction privacy
- Drive-by privacy
- Data disclosure privacy
- **>**

Privacy Legislation in USA

- Case by case approach
 - Fragmented
 - Reactive
- Fair Credit Reporting Act (FCRA), 1970
- Privacy Act 1974
- Family Educational Rights & Privacy Act (FERPA), 1974
- Video Privacy Protection Act (VPAA) 1988
- Health Insurance Portability and Accountability Act (HIPAA) 1996
- Gramm-Leach-Bliley Act (GLBA) 1999
- **>**

3 Ongoing Experiments

Data Disclosure Syntactic Anonymity Differential Privacy

Clifton, Chris, and Tamir Tassa. "On Syntactic Anonymity and Differential Privacy." Transactions on Data Privacy 6, no. 2 (2013): 161-183.

Data Disclosure

PPDP
Privacy-Preserving
Data Publication

Suppression Generalization Rearrange PPDM
Privacy-Preserving
Data Mining

Respond to queries on the data Add random noise

Data Disclosure

Data Disclosure Syntactic Anonymity

k-Anonymization

quasi-Identifiers QIs

sensitive attribute

generalization

		100
age	zipcode	disease
28	10145	measles
21	10141	hepatitis
21	12238	hepatitis
55	12256	flu
53	12142	angina
48	12204	angina

age	zipcode	disease	
[21 - 28]	1****	measles	QI block
[21 - 28]	1****	hepatitis	QI DIOCK
[21 - 28]	1****	hepatitis	
[48 - 55]	12***	flu	
[48 - 55]	12***	angina	QI block
[48 - 55]	12***	angina	

Table 1: (a) A table (left); (b) a corresponding 3-anonymization (right).

I-Diversity

age	zipcode	disease
[21 - 53]	1****	measles
[21 - 53]	1****	hepatitis
[21 - 55]	122**	hepatitis
[21 - 55]	122**	flu
[21 - 53]	1****	angina
[21 - 55]	122**	angina

QI block

Frequency of occurrence of sensitive attribute

≤ 1/3

Table 2: A 3-anonymization of Table 1(a) that respects 3-diversity.

t-Closeness

age	zipcode	disease
[21 - 53]	1****	measles
[21 - 53]	1****	hepatitis
[21 - 55]	122**	hepatitis
[21 - 55]	122**	flu
[21 - 53]	1****	angina
[21 - 55]	122**	angina

QI block

Frequency of ≤ 1/3 occurrence of sensitive attribute

Table 2: A 3-anonymization of Table 1(a) that respects 3-diversity.

Distribution in each QI block should be tclose to distribution in entire population

stricter than I-diversity

p-Sensitivity

age	zipcode	disease
[21 - 53]	1****	measles
[21 - 53]	1****	hepatitis
[21 - 55]	122**	hepatitis
[21 - 55]	122**	flu
[21 - 53]	1****	angina
[21 - 55]	122**	angina

QI block

at least p distinct values in each QI block

Table 2: A 3-anonymization of Table 1(a) that respects 3-diversity.

weaker than I-diversity

Anatomy Anonymization

randomly shuffle Sensitive attribute in each QI block

age	zipcode	disease
28	10145	hepatitis
21	10141	angina
53	12142	measles
21	12238	flu
55	12256	hepatitis
48	12204	angina

Table 3: An Anatomy anonymization of Table 1(a) that uses the same partitioning into QI-blocks as the anonymization in Table 2.

Curse of Dimensionality

- Given a large number of Quasi-Identifiers, need to suppress most of the table to achieve kanonymity
- LKC-privacy for high dimensional data:
 - Attacker knows at most L quasi-identifiers
 - Every combination of L quasi-identifiers is shared by at least K records
 - Diversity in each group of K is not more than 1/C
- Release different versions of the data with different Quasi-Identifiers for different research purposes

Data Disclosure Differential Privacy

Intuition

Database 1

Differ in only 1 record

Database 2

